Classifying Concord

Machine Learning Meets Transcendentalism
© 2025 Richard Anton. All rights reserved.

The accompanying code, but not this article itself, is licensed under the MIT
License. See the LICENSE file for details.

The literary works referenced in this article are in the public domain.

Introduction

This article is a walkthrough of using machine learning classification techniques
combined with some preprocessing to distinguish between the writing of Emerson
and Thoreau.

I wanted to show methods for classifying text using a novel dataset rather than
one of the toy ones so often used for tutorials. Eventually I settled on classifying
text to predict the original author. Since I wanted this to be primarily about
actual writing style rather than the changes to language between regions or
over time I chose two authors from the same era and location, Emerson and
Thoreau. For background on computational authorship attribution see Koppel
et al. (2009) .

Ralph Waldo Emerson and Henry David Thoreau both resided in mid-19th-
century Concord, Massachusetts. Their writings and philosophical exchanges
contributed to American Transcendentalism, and both produced literary works
that remain influential. Despite their shared location and intellectual community,
their writing styles differ in identifiable ways.

Walden has always been one of my favorite books and had a big influence on me
when I first read it in high school, but Emerson was a different story. I found
his writing style wordy and frustrating. Recently I revisited the context of these
works when I read The Transcendentalists and Their World (Gross, 2021) which
gave me the idea to use their writings as the basis for this project.

All the code and data used in this study can be accessed via the GitHub repo
http://github.com/ranton256 /classifying_concord.

The dataset was created from two public domain works, one by each author. For
Emerson, I used Essays: First Series (1841), and for Thoreau, there was really
no choice but Walden, and On The Duty Of Civil Disobedience (1854).

This dataset offers several practical advantages for educational purposes:

1. Historical context: The texts come from the same historical period and
location.

2. Controlled variables: Both authors wrote philosophical prose on related
themes.


https://plato.stanford.edu/entries/transcendentalism/
https://us.macmillan.com/books/9780374279325/thetranscendentalistsandtheirworld/

3. Clear differences: Despite similarities in topic, the authors maintain
distinct writing styles.

4. Accessibility: The works are in the public domain and widely available.

The texts were segmented into passages of 3-5 sentences each, creating a collection
of labeled examples for training and testing classification models.

To explore how different machine learning approaches perform on this task I
compared multiple methods. These included traditional methods, including
logistic regression, random forests, and support vector machines, along with
newer transformer-based models.

The Evolution of Machine Learning Classification

Text classification has developed substantially over the years. Early methods in
the 1960s relied on hand-crafted rules, for example Rocchio (1971), then statistical
techniques took over. Advanced neural networks joined simpler statistical models
in the following years, notably recurrent neural networks (Sebastiani, 2002). More
recently, transformer-based models have gained prominence in this and most
other natural language processing (NLP) use cases from 2018 onward.

1. Rule-based systems (1960s-1980s): Manually crafted rules and decision
trees.

2. Statistical methods (1990s-2000s): Naive Bayes, Support Vector Ma-
chines, and Logistic Regression

3. Neural network approaches (2010s): Recurrent neural networks (RNNs)
including LSTMs (Hochreiter & Schmidhuber, 1997) and convolutional
neural networks (CNNs) (LeCun et al. 1998).

4. Transformer models (2018-present): BERT, GPT, and their derivatives
following the original "Attention is All You Need" paper on transformers
Vaswani, A. et al., 2017).

Each era brought improvements to accuracy and capability. The field also
expanded from simple categorization to include other use cases like sentiment
analysis, authorship attribution (Stamatatos, 2009), and stylometry—the quan-
titative study of writing style (Burrows, 2002).

In our Concord project, we compare methods across this range, from traditional
TF-IDF based classification to transformer-based models.

Creating a Unique Literary Dataset
Data Acquisition

First, we selected two representative texts from Project Gutenberg's public
domain collection. (Project Gutenberg, n.d.).


https://www.gutenberg.org/

emerson_txt_url
thoreau_txt_url

"https://www.gutenberg.org/ebooks/16643.txt.utf-8"
"https://www.gutenberg.org/ebooks/205.txt.utf-8"

def download_file(url):
local_filename = Path(url.split('/')[-1])
result = requests.get(url)
result.raise_for_status()
with open(local_filename, "wb") as f:
f.write(result.content)
return local_filename

emerson_file = download_file(emerson_txt_url)
thoreau_file = download_file(thoreau_txt_url)

This programmatic approach ensures reproducibility and automation, eliminating
the need for manual file handling.

Text Preprocessing

Both works contain Project Gutenberg boilerplate text that needs removal. We
identify the start of the actual content by searching for the standard "START
OF THE PROJECT GUTENBERG EBOOK" marker:

def trim_frontmatter (filename) :
with open(filename) as f:
lines = f.readlines()
n_trim_lines = 0O
for i, line in enumerate(lines):
if "START OF THE PROJECT GUTENBERG EBOOK" in line:
n_trim lines = i + 1
break
trimmed_lines = lines[n_trim_lines:]
trimmed_content = '\n'.join(trimmed_lines)
new_filename = f"trimmed {filenamel}"
with open(new_filename, "w") as f:
f.write(trimmed_content)
return new_filename

Text Segmentation

We segment the texts into manageable chunks of 3-5 sentences each. This creates
a dataset with many examples for training and testing while preserving enough
context to capture authorial style. We use spaCy, a powerful and popular natural
language processing library, to perform the segmentation (Honnibal & Montani,
2017).

This function creates randomly-sized windows of 3-5 sentences, providing natural
text chunks while introducing variation in the dataset.


https://spacy.io/

def segment_doc(filename):
with open(filename) as f:
text = f.read()
doc = nlp(text)
assert doc.has_annotation("SENT_START")
sent_dq = deque()
n = randint(3, 5)
for sent in doc.sents:
sent_dq.append(sent)
if len(sent_dq) > n:
sent_dq.popleft()
snippet = " ".join(sent.text for sent in sent_dq)
yield snippet
n = randint(3, 5)
sent_dq.clear()

Dataset Creation

We create pandas DataFrames from these segments and label them with their
respective authors:

emerson_df = dataframe_from_file(trimmed_emerson_file)

emerson_df ["label"] = "emerson"

thoreau_df = dataframe_from_file(trimmed_thoreau_file)
thoreau_df ["label"] = "thoreau"

pd.concat ([emerson_df, thoreau_df])
shuffle(combined_df, random_state=7919)

combined_df
combined_df

The result is a dataset of 1,911 text segments (1,064 from Emerson and 847 from
Thoreau), each labeled with its author. This balance helps prevent biases in our
models.

Overview of Methods

At a high level there are two versions of the ML pipeline whether we are using a
deep learning/transformers based approach or using a more traditional path.

Traditional path (blue): Raw Text — Preprocessing — TF-IDF — Classical
ML models — Classification (83-86% accuracy)

Transformer path (green): Raw Text — Preprocessing — BERT embeddings
— Fine-tuned model — Classification (92% accuracy)



B Raw Text
Emerson: 'Essays: First Series'
Thoreau: 'Walden & Civil Disobedience'
1,911 text segments

Preprocessing
* Remove Project Gutenberg boilerplate
« Segment into 3-5 sentences
+ Remove stopwords & punctuation
» Lemmatization with spaCy

52 Feature Extraction Split

A 4

M| Traditional Path:

TE-IDE Vectorization DistiiBERT Feature Extraction

@ Classical ML Models
- Logistic Regression @ Classical ML + BERT Features

» Random Forest * Logistic Regression
= Support Vector Machine +SVM

¥ Results: 83-86% Accuracy W] Results: 89-90% Accuracy
¥ Best: SVM (86%) ¥ Best: Logistic Regression (90%)

@ Final Classification
Emerson vs Thoreau

*® Transformer Path:
DistiIBERT Embeddings

@ Fine-tuned DistiBERT

A4

M Results: 92% Accuracy

% Best Overall Performance




Text Representation Techniques

Visualization with Word Clouds

Before diving into classification, we visualize the most frequent words used by
each author through word clouds, excluding common stopwords:

Emerson

dltors

gra uating

Vv1sS1tT

ministe

ndonate

FnlF college

Nnex1sts

Thoreau

¥-Te

nwere

I SEND

la

unc

O

F

These visualizations already reveal interesting differences in vocabulary. Emer-
son's text prominently features abstract terms like "soul," "nature,” "truth," and
; ; . . . . .

power," reflecting his focus on philosophical concepts. Thoreau's cloud empha-
sizes more concrete words like "house," "wood," "water," and "life," mirroring his
practical observations at Walden Pond.



Text Preprocessing for ML

For machine learning, we preprocess the text using spaCy to remove stopwords
and perform lemmatization, which reduces words to their base forms:

final_text = []
for index, entry in enumerate(combined_df['text']):
doc = nlp(entry.lower())
Final_words = []
for word in doc:
if not word.is_stop and not word.is_punct:
Final_words.append(word.lemma_)
final_text.append(' '.join(Final_words))

combined_df['final text'] = final_text

TF-IDF Vectorization

For our traditional machine learning models, we convert text to numerical features
using Term Frequency-Inverse Document Frequency (TF-IDF) vectorization:

vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(combined_df["final text"])
y = combined_df["label"]

TF-IDF converts text into numerical vectors by calculating two components for
each word: how frequently it appears in a specific document (Term Frequency),
and how unique it is across all documents (Inverse Document Frequency) (Jones,
1972). The value combines how frequently the term appears in the document
(TF) and how unique it is across all documents (IDF). This balances common
words against distinctive ones that might better differentiate the authors (Salton
& Buckley, 1988).

Traditional ML Classification Models

We split our dataset into training (80%) and test (20%) sets to evaluate model
performance:

x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=4909)

Logistic Regression

We begin with logistic regression, a simple but effective linear classifier (Cox,
D.R., 1958).

1r_model = LogisticRegression(solver='saga', random_state=8102, n_jobs=-2)
lr_model.fit(x_train, y_train)
y_pred = 1lr_model.predict(x_test)


https://en.wikipedia.org/wiki/Tf–idf
https://en.wikipedia.org/wiki/Logistic_regression

And here we have our results for this first model.

If you are not already familiar with precision, accuracy, recall, and F1 metrics for
model evaluation or want a review, then I recommend the article Performance
Metrics: Confusion matrix, Precision, Recall, and F1 Score (Jayaswal, V. , 2020).

precision recall fl-score support

emerson 0.84 0.90 0.87 210
thoreau 0.87 0.79 0.83 173
accuracy 0.85 383

Logistic Regression

precision recall fl-score support

emerson 0.84 0.9@ 0.87 210
thoreau 09.87 0.79 0.83 173
accuracy 0.85 383
macro avg 09.85 0.85 0.85 383
weighted avg 9.85 0.85 0.85 383

Test accuracy: ©.8511749347258486

Confusion Matrix

180

160

140

emerson

120

Actual

100

-80

-60

thoreau

| -20
emerson thoreau
Predicted

Logistic regression achieves an impressive 85% accuracy, correctly identifying
the author in most cases.

Here we have included confusion matrix. For space we will omit this for most of
the models, but they are available in the GitHub repo.


https://towardsdatascience.com/performance-metrics-confusion-matrix-precision-recall-and-f1-score-a8fe076a2262/
https://towardsdatascience.com/performance-metrics-confusion-matrix-precision-recall-and-f1-score-a8fe076a2262/
https://github.com/ranton256/classifying_concord/tree/main

Random Forest

Next, we implement a Random Forest classifier, which creates an ensemble of
decision trees (Breiman, 2001).

rf = RandomForestClassifier()
rf.fit(x_train, y_train)
y_pred_rf = rf.predict(x_test)

Results:

precision recall fl-score support

emerson 0.82 0.88 0.85 210
thoreau 0.84 0.76 0.80 173
accuracy 0.83 383

The Random Forest model achieves 83% accuracy, slightly lower than logistic
regression.

Support Vector Machine

We also implement a Support Vector Machine (SVM) with a radial basis function
kernel. SVM's are often a strong model compared to traditional neural networks
(pre-transformer,etc) that can train more quickly and often converge more
reliabily (Cortes & Vapnik 1995). If you are not familiar with SVMs and want
to understand the theory behind them a good place to start is the KDnuggets
article A gentle introduction to support vector machines (Priya, 2023).

clf = svm.SVC(kernel='rbf')
clf . fit(x_train, y_train)
y_pred_svm = clf.predict(x_test)

Results:

precision recall fl-score support

emerson 0.84 0.90 0.87 210
thoreau 0.87 0.80 0.83 173
accuracy 0.86 383


https://en.wikipedia.org/wiki/Support_vector_machine
https://www.kdnuggets.com/2023/07/gentle-introduction-support-vector-machines.html

SVM

precision recall fl-score support

emerson 0.84 0.90 B.87 210
thoreau 08.87 0.80 B.83 173
accuracy 8.86 383
macro avg 0.86 0.85 0.85 383
weighted avg 0.86 0.86 0.86 383

Test accuracy: 0.856396866840731
Confusion Matrix

180

160

140

emerson

120

Actua

100

- 80

- 60

thoreau

| -20
emerson thoreau
Predicted

The SVM achieves our best traditional model performance at 86% accuracy. 1
think SVM's are somewhat underappreciated amid all the neural network hype,
for reference on this see "Do we Need Hundreds of Classifiers to Solve Real World
Classification Problems?" by Ferndndez-Delgado et al. (2014). SVMs can be
trained in an amount of time that is quite zippy compared to more complex
models that do not always beat them without a lot of training data and with
less risk of overfitting.

Deep Learning and Transformer Models

Transformer models revolutionized NLP tasks by capturing complex contextual
relationships in text (Wolf et al., 2020). Here we use DistilBERT (Sanh, Debut,
Chaumond, & Wolf, 2019), a lightweight version of BERT (Bidirectional Encoder
Representations from Transformers) (Devlin, Chang, Lee, & Toutanova, 2019).
The Tranformers open source library (Wolf et al., 2020) from Hugging Face has
democratized access to pre-trained transformer models for the broader machine
learning community.

Unlike traditional methods that treat words as independent units, transformer

10


https://dl.acm.org/doi/10.5555/2627435.2697065
https://dl.acm.org/doi/10.5555/2627435.2697065
https://github.com/huggingface/transformers
https://huggingface.co/

models like BERT understand context by analyzing how words relate to all other
words in a sentence simultaneously. This 'attention mechanism' allows the model
to capture subtle stylistic patterns that might be missed by simpler approaches.

In 2025, DistilBERT is not exactly state of the art, however you can train or
fine-tune it easily with modest resources. I did this entire project on Google
Colab for free.

We employ two different strategies using DistilBERT:

1. Feature Extraction: We freeze DistilBERT's pre-trained weights and
use its internal representations as sophisticated features for a traditional
classifiers, in our case an SVM model.

2. Fine-tuning: We allow DistilBERT's weights to update during training
on our dataset, adapting the entire model specifically for our Emerson vs.
Thoreau classification task.

Feature Extraction Approach

First, we use DistilBERT as a feature extractor, employing its hidden states as
input to traditional classifiers. This method is useful in situations where you
may not have enough data to effectively train a model from scratch, but you
want something more powerful than simple feature engineering techniques.

tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")

model = AutoModel.from_pretrained("distilbert-base-uncased")

# Tokenize text and get hidden states
with torch.no_grad():
hidden_train = model (**x_train_tok)
hidden_test = model (**x_test_tok)
# Get the [CLS] hidden states
cls_train = hidden_train.last_hidden_statel[:,0,:]
cls_test = hidden_test.last_hidden_statel[:,0,:]

There is a fair bit of code we are leaving out of the article to get things in a
form to make the Transformers library happy here since everything before this
point was setup with scikit learn.

We then use these features with our traditional classifiers:

Logistic Regression on DistilBERT hidden states:

precision recall fl-score support

emerson 0.91 0.91 0.91 210
thoreau 0.90 0.89 0.89 173
accuracy 0.90 383

11



Logistic Regression on DistilBERT hidden states

precision recall fl-score support

emerson 6.91 0.91 9.91 218
thoreau 6.90 0.89 0.89 173
accuracy 9.90 383
macro avg 0.90 .90 .90 383
weighted avg 0.90 0.90 9.9@ 383

Test accuracy: ©.9033942558746736
Confusion Matrix

180
160

140

emerson

120

Actual

- 100

- 80

- 60

thoreau

- 40

-20

1
emerson thoreau

Predicted

SVM on DistilBERT hidden states:

precision recall fl-score support

emerson 0.88 0.92 0.90 210
thoreau 0.90 0.85 0.87 173
accuracy 0.89 383

This hybrid approach shows a significant improvement, with accuracy increasing
to 90%.

Fine-tuning DistilBERT
And finally, we fine-tune DistilBERT specifically for our classification task

from transformers import DistilBertForSequenceClassification
model = DistilBertForSequenceClassification.from_pretrained(
'distilbert-base-uncased', num_labels=2

)

# create our optimizer
from torch.optim import AdamW

12


https://huggingface.co/docs/transformers/en/training

optimizer = AdamW(model.parameters(), lr=5e-5)
# a bunch of stuff for preprocessing you can find in GiiHub...

Here we have left out a bunch of preprocessing code and other boiler plate for
brevity which you can find in the repo.

from transformers import Trainer, TrainingArguments, DataCollatorWithPadding
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)

training_args = TrainingArguments(
output_dir="./results",
learning_rate=2e-4,
per_device_train_batch_size=8,
per_device_eval_batch_size=8,
num_train_epochs=5,
weight_decay=0.01,
evaluation_strategy="epoch",
logging_strategy="epoch"

# Define Trainer object for training the model
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_train,
eval_dataset=tokenized_test,
tokenizer=tokenizer,
data_collator=data_collator,

trainer.train()

Results:

precision recall fl-score support

emerson 0.93 0.93 0.93 210
thoreau 0.91 0.91 0.91 173
accuracy 0.92 383

13



Fine-tuned DistilBERT

precision recall fl-score support

0 0.93 0.93 0.93 218

1 6.91 0.91 0.91 173

accuracy 9.92 383
macro avg 0.92 0.92 9.92 383
weighted avg 09.92 0.92 9.92 383

Test accuracy: ©0.9216710182767625
Confusion Matrix

180

160

emerson

140

120

Actual

- 100

- 80

- 60

thoreau

- 40

-20

1
emerson thoreau

Predicted

The fine-tuned DistilBERT achieves our best performance at 92% accuracy,
demonstrating how powerful transformer models are for capturing subtle stylistic
differences.

Analysis of Results

Performance Comparison

Looking at our results across models:
1. Traditional ML models (TF-IDF + classifiers): 83-86% accuracy
2. DistilBERT features + traditional classifiers: 89-90% accuracy
3. Fine-tuned DistilBERT: 92% accuracy

This progression demonstrates the advantages of modern transformer models,
which capture contextual information and semantic relationships beyond what
bag-of-words approaches can represent.

The 6-9% accuracy improvement from traditional ML to transformers suggests
that author style involves subtle contextual patterns beyond simple word fre-
quency that require more sophisticated language understanding to detect.

14



ML Approach Performance
94 4
92 4
90 4

88

Accuracy (%)

86 -

84 -

82 4

80

T
Rand. Forest Log. Reg. SVM dBERT+RF dBERT+SVM dBERT+LR F.Tuned dBERT

Misclassification Analysis
Examining misclassified examples provides linguistic insights:

for i, (txt, 1bl, pred) in enumerate(zip(x_test_trans, y_test_trans, y_pred_trans)):
if 1bl !'= pred:
print (£"{1bl=},{pred=}")
row =(my_cat_labels[1bl], my_cat_labels[pred], txt)
rows.append (row)

Several patterns emerge in the 30 misclassified examples (out of 383):

1. Project Gutenberg boilerplate: Many misclassifications involve similar
license text that appears in both works

2. Short segments: Brief text snippets provide insufficient stylistic markers

3. Universal themes: When both authors discuss similar philosophical
concepts, the distinction blurs

4. Quotations: When either author quotes someone else, their personal style
is diminished
One interesting observation is that Thoreau's more practical descriptions are
rarely misclassified, while his philosophical musings more frequently get at-
tributed to Emerson. This aligns with our understanding of their writing
styles—Thoreau's concrete observations of nature are distinctive, while both
authors share transcendentalist philosophical language.

15



It is also interesting to look at the length of passages versus the author prediction
correctness.

Density of Word Count by Classification Outcome and Author

Correctly Classified Incorrectly Classified
0.012 4
0.010

0.010 4
0.008

0.008 -

0.006 Author
=3 thoreau

[0 emerson

0.006 -

Density

0.004
0.004 4

0.002 - 0.002 -

0.000 - 0.000 -

] 100 200 300 400 500
Number of Words Number of Words

100 200 300 400 500

Word Count (Median/Average)

Classification  Correctly Classified Incorrectly Classified

all 78.00/90.59 68.50/77.50
thoreau 100.00/111.79 78.50/74.38
emerson 62.00/71.52 65.50/79.06

We can see that the median and average length correleates significantly with
correctness for passages by Thoreau but seems to have less relation for passages
by Emerson.

Model Interpretability

While transformer models achieve the highest accuracy, they function as "black
boxes" compared to traditional models. With logistic regression, we can examine
the coefficients to identify the most influential words for classification:

The most strongly Emerson-associated terms include abstract nouns and ad-

nons

jectives like "soul," "divine," "intellect," and "universal." Thoreau's distinctive
vocabulary includes more concrete terms like "pond," "woods," "house," and
action verbs reflecting his practical experiences at Walden.

Conclusion

Key Takeaways

16



Metric Result Key Insight

Traditional ML 83-86% accuracy SVM performed best among classi-
cal methods

BERT + Classi- 89-90% accuracy Pre-trained features significantly im-
cal ML prove performance

Fine-tuned Dis- 92% accuracy Context-aware models excel at
tilBERT stylistic distinction

Most Distinctive  Thoreau's nature writ- Concrete observations vs. abstract

ing philosophy

Most Challeng- Philosophical passages Both authors share transcendental-
ing ist vocabulary

The article demonstrates solid technical work and clear passion for both literature
and machine learning. These improvements would make it more accessible to a
broader audience while maintaining its technical depth.

Predicting the author of Emerson and Thoreau's writing demonstrates the
application of machine learning to literary style classification. The results show
how well even simpler ML, models can distinguish between these authors. The
fine-tuned DistilBERT model achieved 92% accuracy on the test set, while
traditional machine learning approaches reached 83-86% accuracy.

The performance progression from traditional to transformer-based models re-
flects broader developments in natural language processing. TF-IDF vectorization
with classic algorithms provided a functional baseline (83-86% accuracy), while
transformer models improved on these results (92% accuracy) by capturing
contextual relationships between words.

The misclassification analysis revealed specific patterns in the 30 misclassified
examples (from 383 total test examples):

1. Project Gutenberg boilerplate text caused confusion for all models
2. Short text segments provided insufficient data for accurate classification

3. Philosophical passages where both authors addressed similar concepts were
harder to distinguish

4. Quoted material from other sources disrupted the authors' characteristic
styles

Thoreau's nature descriptions and practical observations were rarely misclassi-
fied, while his philosophical reflections were sometimes attributed to Emerson.
This aligns with the known characteristics of their writing—Thoreau's concrete
observations stand distinct from Emerson's typically abstract style.

The classification results highlight the distinct writing styles of that Emerson
and Thoreau despite their shared historical context, philosophy, interests, and
proximity.

17



References

Literary Works and Sources

1.

Emerson, R.W. (1841). Essays: First Series. James Munroe and Company.
Retrieved from Project Gutenberg: https://www.gutenberg.org/ebooks/1
6643

. Gross, R. A. (2021). The transcendentalists and their world. Farrar, Straus

and Giroux.

. Thoreau, H.D. (1854). Walden, and On The Duty Of Civil Disobedience.

Ticknor and Fields. Retrieved from Project Gutenberg: https://www.gute
nberg.org/ebooks/205

. Richardson, R.D. (1995). Emerson: The Mind on Fire. University of

California Press.

. Walls, L.D. (2017). Henry David Thoreau: A Life. University of Chicago

Press.

. Buell, L. (2003). Emerson. Harvard University Press.

Machine Learning and NLP References

1.

Breiman, L. (2001). Random Forests. Machine Learning, 45, 5-32. https:
//doi.org/10.1023/A:1010933404324

. Cortes, C., & Vapnik, V.N. (1995). Support-Vector Networks. Machine

Learning, 20, 273-297.https://doi.org/10.1007/BF00994018

. Cox, David R. (1958). "The regression analysis of binary sequences (with

discussion)". J R Stat Soc B. 20 (2): 215-242. https://doi.org/10.1111%
2F;j.2517-6161.1958.tb00292.x. JSTOR 2983890.

. Devlin, J., Chang, M.W., Lee, K., & Toutanova, K. (2019). BERT: Pre-

training of Deep Bidirectional Transformers for Language Understanding.
Proceedings of NAACL-HLT 2019, 4171-4186. https://doi.org/10.18653 /v
1/N19-1423

. Hastie, T., Tibshirani, R., & Friedman, J. (2009). The FElements of

Statistical Learning: Data Mining, Inference, and Prediction (2nd ed.).
Springer.

. Honnibal, M., & Montani, I. (2017). spaCy 2: Natural language un-

derstanding with Bloom embeddings, convolutional neural networks and
incremental parsing.

. Jayaswal, V. (2020, September 14). Performance metrics: Confusion

matriz, precision, recall, and F1 score. Towards Data Science. https:
//towardsdatascience.com/performance-metrics-confusion-matrix-
precision-recall-and-f1-score-a8fe076a2262/

18


https://www.gutenberg.org/ebooks/16643
https://www.gutenberg.org/ebooks/16643
https://us.macmillan.com/books/9780374279325/thetranscendentalistsandtheirworld/
https://www.gutenberg.org/ebooks/205
https://www.gutenberg.org/ebooks/205
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/BF00994018
https://doi.org/10.1111%2Fj.2517-6161.1958.tb00292.x
https://doi.org/10.1111%2Fj.2517-6161.1958.tb00292.x
https://en.wikipedia.org/wiki/JSTOR_(identifier)
https://www.jstor.org/stable/2983890
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://towardsdatascience.com/performance-metrics-confusion-matrix-precision-recall-and-f1-score-a8fe076a2262/
https://towardsdatascience.com/performance-metrics-confusion-matrix-precision-recall-and-f1-score-a8fe076a2262/
https://towardsdatascience.com/performance-metrics-confusion-matrix-precision-recall-and-f1-score-a8fe076a2262/

10.

11.

12.

13.

14.

. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,

0., ... & Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python.
Journal of Machine Learning Research, 12, 2825-2830.

. Priya, B. C. (2023, July 10). A gentle introduction to support vector

machines. KDnuggets. https://www.kdnuggets.com/2023/07/gentle-
introduction-support-vector-machines.html

Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2019). DistilBERT, a
distilled version of BERT: smaller, faster, cheaper and lighter. ArXiv,
abs/1910.01108. https://doi.org/10.48550/arXiv.1910.01108

Sebastiani, F. (2002). Machine learning in automated text categorization.
ACM Computing Surveys, 34(1), 1-47. https://doi.org/10.1145/505282.5
05283

Spérck Jones, K. (1973). Index term weighting. Inf. Storage Retr., 9,
619-633.

Vaswani, A., Shazeer, N.M., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
AN, Kaiser, L., & Polosukhin, I. (2017). Attention is All you Need.
Neural Information Processing Systems.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., ...
& Rush, A. M. (2020). Transformers: State-of-the-Art Natural Language
Processing. Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing: System Demonstrations, 38—-45.

Computational Stylometry and Literary Analysis

1.

Burrows, J. (2002). 'Delta': a Measure of Stylistic Difference and a Guide
to Likely Authorship. Literary and Linguistic Computing, 17(3), 267-287.
https://doi.org/10.1093/1lc/17.3.267

. Jockers; M.L. (2013). Macroanalysis: Digital Methods and Literary History.

University of Illinois Press.

Stamatatos, E. (2009). A survey of modern authorship attribution methods.
Journal of the American Society for Information Science and Technology,
60(3), 538-556. https://doi.org/10.1002/asi.21001

Underwood, T. (2019). Distant Horizons: Digital Evidence and Literary
Change. University of Chicago Press.

Python Libraries and Tools

1.

2.

Pandas Development Team (2020). pandas-dev/pandas: Pandas. Zenodo.
https://doi.org/10.5281 /zenodo.3509134

Harris, C.R., Millman, K.J., van der Walt, S.J. et al. (2020). Array
programming with NumPy. Nature, 585, 357-362. https://doi.org/10.103

19


https://www.kdnuggets.com/2023/07/gentle-introduction-support-vector-machines.html
https://www.kdnuggets.com/2023/07/gentle-introduction-support-vector-machines.html
https://doi.org/10.48550/arXiv.1910.01108
https://doi.org/10.1145/505282.505283
https://doi.org/10.1145/505282.505283
https://arxiv.org/abs/1706.03762
https://doi.org/10.1093/llc/17.3.267
https://doi.org/10.1002/asi.21001
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2

8/s41586-020-2649-2

. Hunter, J. D. (2007). Matplotlib: A 2D Graphics Environment. Computing

in Science & Engineering, 9(3), 90-95. https://doi.org/10.1109/MCSE.200
7.55

. Pedregosa et al. (2011). Scikit-learn: Machine Learning in Python. Journal

of Machine Learning Research, 12, 2825-2830.

. Waskom, M.L. (2021). seaborn: statistical data visualization. Journal of

Open Source Software, 6(60), 3021. https://doi.org/10.21105/joss.03021

. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., ...

& Chintala, S. (2019). PyTorch: An Imperative Style, High-Performance
Deep Learning Library. Advances in Neural Information Processing Sys-
tems, 32, 8026-8037.

Core NLP and Text Classification

Fernéndez-Delgado, M., Cernadas, E., Barro, S., & Amorim, D. (2014). Do
we need hundreds of classifiers to solve real world classification problems?
Journal of Machine Learning Research, 15(1), 3133-3181.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural
computation, 9(8), 1735-1780.

Koppel, M., Schler, J., & Argamon, S. (2009). Computational methods in
authorship attribution. Journal of the American Society for Information
Science and Technology, 60(1), 9-26.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11),
2278-2324.

Manning, C. D., & Schiitze, H. (1999). Foundations of statistical natural
language processing. MIT Press.

Project Gutenberg. (n.d.). Free eBooks. https://www.gutenberg.org/

Rocchio Jr, J. J. (1971). Relevance feedback in information retrieval. The
SMART retrieval system: experiments in automatic document processing,
313-323.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A.,
Cistac, P., Rault, T., Louf, R., Funtowicz, M., Davison, J., Shleifer, S.,
Platen, P.V., Ma, C., Jernite, Y., Plu, J., Xu, C., Scao, T.L., Gugger, S.,
Drame, M., Lhoest, Q., & Rush, A.M. (2020). Transformers: State-of-the-
Art Natural Language Processing. Conference on Empirical Methods in
Natural Language Processing.

Salton, G., & Buckley, C. (1988). Term-weighting approaches in automatic
text retrieval. Information processing & management, 24(5), 513-523.

20


https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://scikit-learn.org/
https://doi.org/10.21105/joss.03021
https://www.gutenberg.org/
https://aclanthology.org/2020.emnlp-demos.6/
https://aclanthology.org/2020.emnlp-demos.6/

o Sparck Jones, K. (1972). A statistical interpretation of term specificity
and its application in retrieval. Journal of documentation, 28(1), 11-21.

Appendix: Project Repository
Installation and Usage

An alternative to these steps is to use Google Colab to import the notebook
directly from GitHub.

1. Clone the repository:

git clone https://github.com/yourusername/classifying_concord.git
cd classifying_concord

2. Install required packages:

pip imstall -r requirements.txt
3. Download the spaCy English model:

python -m spacy download en_core_web_sm
4. Run the Jupyter notebook:

jupyter notebook supervised_ML_identify_author.ipynb

21



	Classifying Concord
	 Machine Learning Meets Transcendentalism 
	Introduction
	The Evolution of Machine Learning Classification
	Creating a Unique Literary Dataset
	Data Acquisition
	Text Preprocessing
	Text Segmentation
	Dataset Creation

	Overview of Methods
	Text Representation Techniques
	Visualization with Word Clouds
	Text Preprocessing for ML
	TF-IDF Vectorization

	Traditional ML Classification Models
	Logistic Regression
	Random Forest
	Support Vector Machine

	Deep Learning and Transformer Models
	Feature Extraction Approach
	Fine-tuning DistilBERT

	Analysis of Results
	Performance Comparison
	Misclassification Analysis
	Model Interpretability

	Conclusion
	Key Takeaways

	References
	Literary Works and Sources
	Machine Learning and NLP References
	Computational Stylometry and Literary Analysis
	Python Libraries and Tools
	Core NLP and Text Classification

	Appendix: Project Repository
	Installation and Usage



