
supervised_ML_identify_author

April 4, 2025

1 Supervised Machine Learning - Identify Author

[1]: !pip install -q spacy

[2]: import spacy

1.1 The Dataset
Our two datasets are constructed from two related works of 19th century American transcenden-
talism. These are both public domain.

1. Essays by Ralph Waldo Emerson by Ralph Waldo Emerson
2. Walden, and On The Duty Of Civil Disobedience by Henry David Thoreau

These two authors had different writing styles but shared more than their philosophical interests—
they were neighbors in Concord, Massachusetts.

These two works are also similar in length when formatted as plain text.

We will use spaCy to segment each work into sections of roughly 3 to 5 sentences each, then build
a datafrom of the text including a label of ‘emerson’ or ‘thoreau’, then shuffle and split that into
train and test sets for training some machine learning models to classify them by predicting which
author they are from and compare the results.

We will also preprocess text to remove stopwords,and perform lemmatization.

[3]: emerson_txt_url = "https://www.gutenberg.org/ebooks/16643.txt.utf-8"
thoreau_txt_url = "https://www.gutenberg.org/ebooks/205.txt.utf-8"

[4]: import requests
from pathlib import Path

[5]: def download_file(url):
local_filename = Path(url.split('/')[-1])
result = requests.get(url)
result.raise_for_status()
with open(local_filename, "wb") as f:

f.write(result.content)
return local_filename

1

https://www.google.com/url?q=https%3A%2F%2Fwww.gutenberg.org%2Febooks%2F16643
https://www.google.com/url?q=https%3A%2F%2Fwww.gutenberg.org%2Febooks%2F205

[6]: emerson_file = download_file(emerson_txt_url)
thoreau_file = download_file(thoreau_txt_url)

[7]: !head -n 50 {emerson_file}

 The Project Gutenberg eBook of Essays by Ralph Waldo Emerson

This ebook is for the use of anyone anywhere in the United States and
most other parts of the world at no cost and with almost no restrictions
whatsoever. You may copy it, give it away or re-use it under the terms
of the Project Gutenberg License included with this ebook or online
at www.gutenberg.org. If you are not located in the United States,
you will have to check the laws of the country where you are located
before using this eBook.

Title: Essays by Ralph Waldo Emerson

Author: Ralph Waldo Emerson

Editor: Edna Henry Lee Turpin

Release date: September 4, 2005 [eBook #16643]
Most recently updated: April 29, 2022

Language: English

Credits: Curtis A. Weyant, Sankar Viswanathan and the Online Distributed
Proofreading Team

*** START OF THE PROJECT GUTENBERG EBOOK ESSAYS BY RALPH WALDO EMERSON ***

ESSAYS

BY

RALPH WALDO EMERSON

Merrill's English Texts

SELECTED AND EDITED, WITH INTRODUCTION

2

AND NOTES, BY EDNA H.L. TURPIN, AUTHOR
OF "STORIES FROM AMERICAN HISTORY,"
"CLASSIC FABLES," "FAMOUS PAINTERS," ETC.

NEW YORK

CHARLES E. MERRILL CO.

[8]: !head -n 50 {thoreau_file}

 The Project Gutenberg eBook of Walden, and On The Duty Of Civil Disobedience

This ebook is for the use of anyone anywhere in the United States and
most other parts of the world at no cost and with almost no restrictions
whatsoever. You may copy it, give it away or re-use it under the terms
of the Project Gutenberg License included with this ebook or online
at www.gutenberg.org. If you are not located in the United States,
you will have to check the laws of the country where you are located
before using this eBook.

Title: Walden, and On The Duty Of Civil Disobedience

Author: Henry David Thoreau

Release date: January 1, 1995 [eBook #205]
Most recently updated: September 19, 2024

Language: English

Credits: Judith Boss, and David Widger

*** START OF THE PROJECT GUTENBERG EBOOK WALDEN, AND ON THE DUTY OF CIVIL
DISOBEDIENCE ***
WALDEN

and

ON THE DUTY OF CIVIL DISOBEDIENCE

3

by Henry David Thoreau

cover

Contents

WALDEN

Economy
Where I Lived, and What I Lived For
Reading

[9]: # Let's strip the frontmatter lines off the start of each file.
remove each line preceding one that contains "START OF THE PROJECT GUTENBERG␣

↪EBOOK "
!grep -n "START OF THE PROJECT GUTENBERG EBOOK" {emerson_file}
!grep -n "START OF THE PROJECT GUTENBERG EBOOK" {thoreau_file}

25:*** START OF THE PROJECT GUTENBERG EBOOK ESSAYS BY RALPH WALDO EMERSON ***
23:*** START OF THE PROJECT GUTENBERG EBOOK WALDEN, AND ON THE DUTY OF CIVIL
DISOBEDIENCE ***

[10]: def trim_frontmatter(filename):
with open(filename) as f:
lines = f.readlines()

n_trim_lines = 0
for i, line in enumerate(lines):

if "START OF THE PROJECT GUTENBERG EBOOK" in line:
n_trim_lines = i + 1
break

trimmed_lines = lines[n_trim_lines:]
trimmed_content = '\n'.join(trimmed_lines)
new_filename = f"trimmed_{filename}"
with open(new_filename, "w") as f:
f.write(trimmed_content)

return new_filename

[11]: trimmed_emerson_file = trim_frontmatter(emerson_file)
trimmed_thoreau_file = trim_frontmatter(thoreau_file)

4

[12]: !head {trimmed_emerson_file}
!head {trimmed_thoreau_file}

ESSAYS

WALDEN

[13]: from collections import deque
from random import randint
import itertools

[14]: nlp = spacy.load("en_core_web_sm")

[15]: def segment_doc(filename):
with open(filename) as f:
text = f.read()

doc = nlp(text)
assert doc.has_annotation("SENT_START")

sent_dq = deque()
#it = doc.sents.__iter__()
n = randint(3, 5)

for sent in doc.sents:
sent_dq.append(sent)
if len(sent_dq) > n:

sent_dq.popleft()
snippet = " ".join(sent.text for sent in sent_dq)
yield snippet
n = randint(3, 5)

5

sent_dq.clear()

[16]: import pandas as pd

[17]: def dataframe_from_file(file_path):
segments = segment_doc(file_path)

df = pd.DataFrame(segments, columns=["text"])
return df

[18]: emerson_df = dataframe_from_file(trimmed_emerson_file)
emerson_df.to_csv("emerson.csv")
emerson_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1064 entries, 0 to 1063
Data columns (total 1 columns):
Column Non-Null Count Dtype
--- ------ -------------- -----
0 text 1064 non-null object
dtypes: object(1)
memory usage: 8.4+ KB

[19]: emerson_df.head()

[19]: text
0 The editors of the several volumes will be\n\n…
1 He was descended\n\nfrom a long line of New En…
2 After graduating from college he taught school…
3 Although his sermons were\n\nalways couched in…
4 "\n\n\n\nEmerson did not long remain a ministe…

[20]: thoreau_df = dataframe_from_file(trimmed_thoreau_file)
thoreau_df.to_csv("thoreau.csv")
thoreau_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 847 entries, 0 to 846
Data columns (total 1 columns):
Column Non-Null Count Dtype
--- ------ -------------- -----
0 text 847 non-null object
dtypes: object(1)
memory usage: 6.7+ KB

[21]: thoreau_df.head()

6

[21]: text
0 I lived there two\n\nyears and two months. At …
1 In most books, the _I_, or first person,\n\nis…
2 As for the rest of my readers,\n\nthey will ac…
3 The twelve labors of Hercules\n\nwere trifling…
4 Why should they eat their sixty acres, when ma…

[22]: # combine and shuffle the datasets, using a consistent random seed.
from sklearn.utils import shuffle

d1 = emerson_df.copy()
d1["label"] = "emerson"

d2 = thoreau_df.copy()
d2["label"] = "thoreau"

combined_df = pd.concat([d1, d2])
combined_df = shuffle(combined_df, random_state=7919)
combined_df.to_csv("combined.csv")
combined_df.info()
combined_df.head()

<class 'pandas.core.frame.DataFrame'>
Index: 1911 entries, 153 to 77
Data columns (total 2 columns):
Column Non-Null Count Dtype
--- ------ -------------- -----
0 text 1911 non-null object
1 label 1911 non-null object
dtypes: object(2)
memory usage: 44.8+ KB

[22]: text label
153 During this fast they abstain from the\n\ngrat… thoreau
638 The life of man is a self-evolving circle,[696… emerson
66 But perhaps a man is not required to bury hims… thoreau
409 Fine manners[398] show\n\nthemselves formidabl… emerson
201 We must learn to reawaken and keep ourselves a… thoreau

1.2 Now we have our dataset in combined.csv
[23]: import matplotlib.pyplot as plt

import seaborn as sns

[24]: # you can start here if csv files were already created.
from sklearn.feature_extraction.text import TfidfVectorizer

7

[25]: sns.countplot(x=combined_df["label"], palette="rocket")
plt.show()

<ipython-input-25-33f8a76ce336>:1: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in
v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same
effect.

sns.countplot(x=combined_df["label"], palette="rocket")

[26]: !pip install -q wordcloud

[27]: from spacy.lang.en import STOP_WORDS
my_stopwords = STOP_WORDS

', '.join(my_stopwords)

[27]: "take, most, least, whereafter, both, they, might, same, will, below, say, his,
'm, 's, anyway, and, within, forty, before, eleven, due, it, there, seems, then,
call, go, n‘t, unless, 'll, nothing, fifty, whence, therefore, noone, rather,

8

amongst, either, serious, everywhere, on, enough, whereas, thence, somewhere,
front, whenever, whose, those, but, sometime, part, full, toward, thereafter,
have, we, became, becomes, together, although, seem, had, though, perhaps, five,
than, which, must, however, himself, ourselves, why, ‘m, our, did, own, its,
herein, them, everyone, without, somehow, into, such, side, ’d, the, give, at,
others, ’ve, put, only, just, where, several, my, whether, seemed, from, last,
've, well, behind, whole, you, ‘s, ‘ll, a, ‘re, third, each, seeming, too, ’s,
any, formerly, hereby, therein, itself, get, may, everything, thru, become, can,
once, out, up, by, name, 'd, many, beyond, all, even, afterwards, per, were,
alone, former, otherwise, around, always, nor, thereupon, doing, myself,
yourselves, thus, among, latter, becoming, yourself, sometimes, him, done, be,
elsewhere, very, is, whereupon, whither, to, ’m, upon, neither, across, their,
i, ’ll, themselves, re, does, indeed, often, more, hereafter, ’re, or, her,
someone, ca, being, so, anything, between, are, now, against, would, yours,
latterly, move, over, hence, this, make, none, hereupon, that, yet, was, some,
please, further, twenty, also, back, when, really, anyone, hundred, an, could,
here, if, since, me, as, these, via, whatever, two, herself, bottom, made,
never, beforehand, am, about, during, until, something, almost, what, above,
ten, still, us, four, ‘ve, because, besides, with, how, towards, your, 're, few,
sixty, six, down, along, keep, nowhere, not, amount, eight, n’t, already, ‘d,
throughout, other, been, much, do, fifteen, ever, no, first, every, see, nobody,
off, except, show, twelve, whoever, else, whom, cannot, one, anywhere, in, hers,
used, whereby, another, moreover, thereby, beside, anyhow, onto, should, next,
again, wherever, top, namely, empty, after, regarding, he, she, has, three, n't,
less, for, through, ours, nevertheless, various, of, under, quite, who, mostly,
using, wherein, while, nine, mine, meanwhile"

[28]: # Show wordcloud from each dataset.
from wordcloud import WordCloud

def plot_word_cloud(text_sections, title):
cloud = WordCloud(background_color='black', stopwords=my_stopwords).

↪generate(str(text_sections))
fig = plt.figure(figsize=(12,8), facecolor='white')
plt.imshow(cloud, interpolation="bilinear")
plt.axis('off')
plt.title(title, fontsize=48)
plt.tight_layout(pad=0)
plt.show()

[29]: plot_word_cloud(emerson_df["text"], "Emerson")

9

[30]: plot_word_cloud(thoreau_df["text"], "Thoreau")

[31]: # Preprocess text to remove stopwords, and perform lemmatization.

final_text = []
for index,entry in enumerate(combined_df['text']):

10

doc = nlp(entry.lower())
Final_words = []
for word in doc:

if not word.is_stop and not word.is_punct:
Final_words.append(word.lemma_)

final_text.append(' '.join(Final_words))

[32]: combined_df['final_text'] = final_text
combined_df.head()

[32]: text label \
153 During this fast they abstain from the\n\ngrat… thoreau
638 The life of man is a self-evolving circle,[696… emerson
66 But perhaps a man is not required to bury hims… thoreau
409 Fine manners[398] show\n\nthemselves formidabl… emerson
201 We must learn to reawaken and keep ourselves a… thoreau

final_text
153 fast abstain \n\n gratification appetite passi…
638 life man self evolve circle,[696 \n\n ring imp…
66 man require bury \n\n point important distinc…
409 fine manners[398 \n\n formidable uncultivated …
201 learn reawaken awake mechanical \n\n aid infin…

[33]: vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(combined_df["final_text"])
y = combined_df["label"]

[34]: # split our data into train and test sets.
from sklearn.model_selection import train_test_split

x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2,␣
↪random_state=4909)

print(f"x_train: {x_train.shape}")
print(f"y_train: {y_train.shape}")
print(f"x_test: {x_test.shape}")
print(f"y_test: {y_test.shape}")

x_train: (1528, 11929)
y_train: (1528,)
x_test: (383, 11929)
y_test: (383,)

[35]: from sklearn.linear_model import LogisticRegression

[36]: # -2 for n_jobs is all but one CPU available.
lr_model = LogisticRegression(solver='saga', random_state=8102, n_jobs=-2)

11

lr_model.fit(x_train, y_train)

[36]: LogisticRegression(n_jobs=-2, random_state=8102, solver='saga')

[37]: from sklearn.metrics import f1_score

y_pred = lr_model.predict(x_test)

[38]: from sklearn.metrics import classification_report, confusion_matrix,␣
↪accuracy_score

from IPython.display import Markdown, display

def show_metrics(y_test, y_pred, model_name):
display(Markdown(f"# {model_name}"))

print(classification_report(y_test,y_pred))
print("Test accuracy:", accuracy_score(y_test,y_pred))
cm = confusion_matrix(y_test, y_pred)

labels = ["emerson", "thoreau"]
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=labels,␣

↪yticklabels=labels)
plt.title('Confusion Matrix')
plt.ylabel('Actual')
plt.xlabel('Predicted')
plt.show()

[39]: show_metrics(y_test, y_pred, "Logistic Regression")

2 Logistic Regression
precision recall f1-score support

emerson 0.84 0.90 0.87 210
thoreau 0.87 0.79 0.83 173

accuracy 0.85 383
macro avg 0.85 0.85 0.85 383

weighted avg 0.85 0.85 0.85 383

Test accuracy: 0.8511749347258486

12

[40]: # Let's compare that to random forests.

from sklearn.ensemble import RandomForestClassifier

rf = RandomForestClassifier()
rf.fit(x_train,y_train)

[40]: RandomForestClassifier()

[41]: y_pred_rf = rf.predict(x_test)

[42]: show_metrics(y_test, y_pred_rf, "Random Forest")

3 Random Forest
precision recall f1-score support

emerson 0.82 0.88 0.85 210

13

thoreau 0.84 0.76 0.80 173

accuracy 0.83 383
macro avg 0.83 0.82 0.82 383

weighted avg 0.83 0.83 0.82 383

Test accuracy: 0.825065274151436

[43]: from sklearn import svm

[44]: # create the SVM classifier
clf = svm.SVC(kernel='rbf')

clf.fit(x_train,y_train)
clf

[44]: SVC()

[45]: y_pred_svm = clf.predict(x_test)

14

[46]: show_metrics(y_test, y_pred_svm, "SVM")

4 SVM
precision recall f1-score support

emerson 0.84 0.90 0.87 210
thoreau 0.87 0.80 0.83 173

accuracy 0.86 383
macro avg 0.86 0.85 0.85 383

weighted avg 0.86 0.86 0.86 383

Test accuracy: 0.856396866840731

[47]: !pip install -q transformers

[48]: import torch

15

[49]: from transformers import AutoTokenizer, AutoModel

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)

cuda

[50]: tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased",␣
↪return_token_type_ids = False, padding="max_length", truncation=True)

model = AutoModel.from_pretrained("distilbert-base-uncased").to(device)

tokenizer_config.json: 0%| | 0.00/48.0 [00:00<?, ?B/s]

config.json: 0%| | 0.00/483 [00:00<?, ?B/s]

vocab.txt: 0%| | 0.00/232k [00:00<?, ?B/s]

tokenizer.json: 0%| | 0.00/466k [00:00<?, ?B/s]

Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed.
Falling back to regular HTTP download. For better performance, install the
package with: `pip install huggingface_hub[hf_xet]` or `pip install hf_xet`
WARNING:huggingface_hub.file_download:Xet Storage is enabled for this repo, but
the 'hf_xet' package is not installed. Falling back to regular HTTP download.
For better performance, install the package with: `pip install
huggingface_hub[hf_xet]` or `pip install hf_xet`

model.safetensors: 0%| | 0.00/268M [00:00<?, ?B/s]

[51]: x_train_s, x_test_s, y_train_s, y_test_s =␣
↪train_test_split(combined_df["text"], combined_df["label"], test_size=0.2,␣
↪random_state=4909)

print(f"x_train_s: {x_train_s.shape}")
print(f"y_train_s: {y_train_s.shape}")
print(f"x_test_s: {x_test_s.shape}")
print(f"y_test_s: {y_test_s.shape}")

x_train_s: (1528,)
y_train_s: (1528,)
x_test_s: (383,)
y_test_s: (383,)

[52]: x_train_tok = tokenizer(x_train_s.tolist(), padding=True, truncation=True,␣
↪return_tensors="pt")

y_train_tok = y_train_s.tolist()

x_test_tok = tokenizer(x_test_s.tolist(), padding=True, truncation=True,␣
↪return_tensors="pt")

y_test_tok = y_test_s.tolist()

16

[53]: x_train_tok[0:2]

[53]: [Encoding(num_tokens=512, attributes=[ids, type_ids, tokens, offsets,
attention_mask, special_tokens_mask, overflowing]),
Encoding(num_tokens=512, attributes=[ids, type_ids, tokens, offsets,
attention_mask, special_tokens_mask, overflowing])]

[54]: print(x_train_tok.keys())

#move onto device (GPU)
x_train_tok = {k:torch.tensor(v).to(device) for k,v in x_train_tok.items()}
x_test_tok = {k:torch.tensor(v).to(device) for k,v in x_test_tok.items()}

dict_keys(['input_ids', 'attention_mask'])

<ipython-input-54-cbedc1b8b59f>:5: UserWarning: To copy construct from a tensor,
it is recommended to use sourceTensor.clone().detach() or
sourceTensor.clone().detach().requires_grad_(True), rather than
torch.tensor(sourceTensor).

x_train_tok = {k:torch.tensor(v).to(device) for k,v in x_train_tok.items()}
<ipython-input-54-cbedc1b8b59f>:6: UserWarning: To copy construct from a tensor,
it is recommended to use sourceTensor.clone().detach() or
sourceTensor.clone().detach().requires_grad_(True), rather than
torch.tensor(sourceTensor).

x_test_tok = {k:torch.tensor(v).to(device) for k,v in x_test_tok.items()}

[55]: with torch.no_grad():
hidden_train = model(**x_train_tok)
hidden_test = model(**x_test_tok)

Get the [CLS] hidden states
cls_train = hidden_train.last_hidden_state[:,0,:]
cls_test = hidden_test.last_hidden_state[:,0,:]

[56]: x_train_db = cls_train.to("cpu")
y_train_tok

x_test_db = cls_test.to("cpu")
y_test_tok

[81]: lr_model2 = LogisticRegression(C=1, solver='saga', random_state=8102,␣
↪n_jobs=-2, max_iter=10_000)

lr_model2.fit(x_train_db,y_train_tok)

This does not converge, with the settings used for TF-DF

17

ConvergenceWarning: The max_iter was reached which means the coef_ did not␣
↪converge

So we adjusting max_iter and experimented with C (regulation strength).

y_pred = lr_model2.predict(x_test_db)

[58]: show_metrics(y_test_tok, y_pred, "Logistic Regression on DistilBERT hidden␣
↪states")

5 Logistic Regression on DistilBERT hidden states
precision recall f1-score support

emerson 0.91 0.91 0.91 210
thoreau 0.90 0.89 0.89 173

accuracy 0.90 383
macro avg 0.90 0.90 0.90 383

weighted avg 0.90 0.90 0.90 383

Test accuracy: 0.9033942558746736

18

[59]: rf = RandomForestClassifier()
rf.fit(x_train_db,y_train_tok)

rf.score(x_test_db,y_test_tok)

y_pred_rf = rf.predict(x_test_db)

[60]: show_metrics(y_test_tok, y_pred_rf, "Random Forest on DistilBERT hidden states")

6 Random Forest on DistilBERT hidden states
precision recall f1-score support

emerson 0.86 0.90 0.88 210
thoreau 0.87 0.82 0.84 173

accuracy 0.86 383
macro avg 0.86 0.86 0.86 383

weighted avg 0.86 0.86 0.86 383

Test accuracy: 0.8616187989556136

19

[61]: from sklearn import svm

[62]: # create the SVM classifier
clf = svm.SVC(kernel='rbf')

clf.fit(x_train_db,y_train_tok)

y_pred_svm = clf.predict(x_test_db)

[63]: show_metrics(y_test_tok, y_pred_svm, "SVM on DistilBERT hidden states")

7 SVM on DistilBERT hidden states
precision recall f1-score support

emerson 0.88 0.92 0.90 210
thoreau 0.90 0.85 0.87 173

accuracy 0.89 383

20

macro avg 0.89 0.88 0.89 383
weighted avg 0.89 0.89 0.89 383

Test accuracy: 0.8877284595300261

[64]: from transformers import DistilBertForSequenceClassification

Define the model with random weights, suitable for binary classification (2␣
↪classes)

model = DistilBertForSequenceClassification.from_pretrained(
'distilbert-base-uncased', num_labels=2

)
we already have the appropriate tokenizer from before.

Some weights of DistilBertForSequenceClassification were not initialized from
the model checkpoint at distilbert-base-uncased and are newly initialized:
['classifier.bias', 'classifier.weight', 'pre_classifier.bias',
'pre_classifier.weight']
You should probably TRAIN this model on a down-stream task to be able to use it
for predictions and inference.

21

[65]: # create our optimizer
from torch.optim import AdamW

optimizer = AdamW(model.parameters(), lr=5e-5)

[66]: !pip install -q datasets

�� 0.0/491.2 kB
? eta -:--:--
�� 491.2/491.2 kB
34.0 MB/s eta 0:00:00

�� 0.0/116.3

kB ? eta -:--:--
�� 116.3/116.3 kB
12.8 MB/s eta 0:00:00

�� 0.0/183.9

kB ? eta -:--:--
�� 183.9/183.9 kB
19.4 MB/s eta 0:00:00

�� 0.0/143.5

kB ? eta -:--:--
�� 143.5/143.5 kB
15.5 MB/s eta 0:00:00

�� 0.0/194.8

kB ? eta -:--:--
�� 194.8/194.8 kB
21.4 MB/s eta 0:00:00

22

ERROR: pip's dependency resolver does not currently take into account

all the packages that are installed. This behaviour is the source of the

following dependency conflicts.

torch 2.6.0+cu124 requires nvidia-cublas-cu12==12.4.5.8; platform_system ==

"Linux" and platform_machine == "x86_64", but you have nvidia-cublas-cu12

12.5.3.2 which is incompatible.

torch 2.6.0+cu124 requires nvidia-cuda-cupti-cu12==12.4.127; platform_system ==

"Linux" and platform_machine == "x86_64", but you have nvidia-cuda-cupti-cu12

12.5.82 which is incompatible.

torch 2.6.0+cu124 requires nvidia-cuda-nvrtc-cu12==12.4.127; platform_system ==

"Linux" and platform_machine == "x86_64", but you have nvidia-cuda-nvrtc-cu12

12.5.82 which is incompatible.

torch 2.6.0+cu124 requires nvidia-cuda-runtime-cu12==12.4.127; platform_system

== "Linux" and platform_machine == "x86_64", but you have nvidia-cuda-runtime-

cu12 12.5.82 which is incompatible.

torch 2.6.0+cu124 requires nvidia-cudnn-cu12==9.1.0.70; platform_system ==

"Linux" and platform_machine == "x86_64", but you have nvidia-cudnn-cu12

9.3.0.75 which is incompatible.

torch 2.6.0+cu124 requires nvidia-cufft-cu12==11.2.1.3; platform_system ==

"Linux" and platform_machine == "x86_64", but you have nvidia-cufft-cu12

11.2.3.61 which is incompatible.

torch 2.6.0+cu124 requires nvidia-curand-cu12==10.3.5.147; platform_system ==

"Linux" and platform_machine == "x86_64", but you have nvidia-curand-cu12

10.3.6.82 which is incompatible.

torch 2.6.0+cu124 requires nvidia-cusolver-cu12==11.6.1.9; platform_system ==

"Linux" and platform_machine == "x86_64", but you have nvidia-cusolver-cu12

11.6.3.83 which is incompatible.

torch 2.6.0+cu124 requires nvidia-cusparse-cu12==12.3.1.170; platform_system ==

"Linux" and platform_machine == "x86_64", but you have nvidia-cusparse-cu12

12.5.1.3 which is incompatible.

torch 2.6.0+cu124 requires nvidia-nvjitlink-cu12==12.4.127; platform_system ==

"Linux" and platform_machine == "x86_64", but you have nvidia-nvjitlink-cu12

12.5.82 which is incompatible.

gcsfs 2025.3.2 requires fsspec==2025.3.2, but you have fsspec 2024.12.0 which is

incompatible.

23

[67]: from sklearn import preprocessing

Create a copy of our dataframe
trans_df = combined_df.copy()

drop the preprocessed text column which we aren't using.
trans_df.drop("final_text", axis=1, inplace=True)

transform our labels into numeric values.
le = preprocessing.LabelEncoder()
my_labels = trans_df["label"].tolist()
le.fit(my_labels)

my_cat_labels = le.classes_
trans_df["label"] = le.transform(trans_df["label"])

print(f"{my_cat_labels=}")

trans_df.info()
trans_df.describe()
trans_df.head()

my_cat_labels=array(['emerson', 'thoreau'], dtype='<U7')
<class 'pandas.core.frame.DataFrame'>
Index: 1911 entries, 153 to 77
Data columns (total 2 columns):
Column Non-Null Count Dtype
--- ------ -------------- -----
0 text 1911 non-null object
1 label 1911 non-null int64
dtypes: int64(1), object(1)
memory usage: 44.8+ KB

[67]: text label
153 During this fast they abstain from the\n\ngrat… 1
638 The life of man is a self-evolving circle,[696… 0
66 But perhaps a man is not required to bury hims… 1
409 Fine manners[398] show\n\nthemselves formidabl… 0
201 We must learn to reawaken and keep ourselves a… 1

[68]: from datasets import Dataset
from transformers import AutoTokenizer

for simplicity, we are just splitting the dataset again.
train_df, test_df = train_test_split(trans_df, test_size=0.2, random_state=4909)

24

train_dataset = Dataset.from_pandas(train_df)
test_dataset = Dataset.from_pandas(test_df)

def tokenize_data(examples):
return tokenizer(examples["text"], truncation=True)

tokenized_train = train_dataset.map(tokenize_data, batched=True)
tokenized_test = test_dataset.map(tokenize_data, batched=True)

Map: 0%| | 0/1528 [00:00<?, ? examples/s]

Map: 0%| | 0/383 [00:00<?, ? examples/s]

[69]: from transformers import Trainer, TrainingArguments, DataCollatorWithPadding

data_collator = DataCollatorWithPadding(tokenizer=tokenizer)

training_args = TrainingArguments(
output_dir="./results",
learning_rate=2e-4,
per_device_train_batch_size=8,
per_device_eval_batch_size=8,
num_train_epochs=5,
weight_decay=0.01,
evaluation_strategy="epoch",
logging_strategy="epoch"

)

Define Trainer object for training the model
trainer = Trainer(

model=model,
args=training_args,
train_dataset=tokenized_train,
eval_dataset=tokenized_test,
tokenizer=tokenizer,
data_collator=data_collator,

)

trainer.train()

/usr/local/lib/python3.11/dist-packages/transformers/training_args.py:1611:
FutureWarning: `evaluation_strategy` is deprecated and will be removed in
version 4.46 of � Transformers. Use `eval_strategy` instead

warnings.warn(
<ipython-input-69-c2f16bbd5fc2>:17: FutureWarning: `tokenizer` is deprecated and
will be removed in version 5.0.0 for `Trainer.__init__`. Use `processing_class`
instead.

25

trainer = Trainer(
wandb: WARNING The `run_name` is currently set to the same
value as `TrainingArguments.output_dir`. If this was not intended, please
specify a different run name by setting the `TrainingArguments.run_name`
parameter.
wandb: Using wandb-core as the SDK backend. Please refer to
https://wandb.me/wandb-core for more information.

<IPython.core.display.Javascript object>

wandb: Logging into wandb.ai. (Learn how to deploy a W&B server
locally: https://wandb.me/wandb-server)
wandb: You can find your API key in your browser here:
https://wandb.ai/authorize
wandb: Paste an API key from your profile and hit enter:

··········

wandb: WARNING If you're specifying your api key in code,
ensure this code is not shared publicly.
wandb: WARNING Consider setting the WANDB_API_KEY
environment variable, or running `wandb login` from the command line.
wandb: No netrc file found, creating one.
wandb: Appending key for api.wandb.ai to your netrc file:
/root/.netrc
wandb: Currently logged in as: ranton (ranton-

fieldjay-com) to https://api.wandb.ai. Use `wandb login

--relogin` to force relogin

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

[69]: TrainOutput(global_step=955, training_loss=0.1480980508614585,
metrics={'train_runtime': 112.7924, 'train_samples_per_second': 67.735,
'train_steps_per_second': 8.467, 'total_flos': 434145340670208.0, 'train_loss':
0.1480980508614585, 'epoch': 5.0})

[70]: # Save the model.
trainer.save_model('model')

[71]: # This is how you can load the model.

26

from transformers import AutoModelForSequenceClassification
model = AutoModelForSequenceClassification.from_pretrained("./model")

[72]: def predictor(text):
#inputs = tokenizer(text, return_tensors="pt")
inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt")
inputs = {k:torch.tensor(v).to(device) for k,v in inputs.items()}

with torch.no_grad():
logits = model(**inputs).logits

predictions = torch.argmax(logits, dim=-1)
return predictions

[73]: x_test_trans = test_dataset["text"]
y_test_trans = test_dataset["label"]

sanity test a few inference inputs.
for txt, lbl in zip(x_test_trans[:5], y_test_trans[:5]):

pred = predictor(txt)
print(f"{my_cat_labels[lbl]}: pred={my_cat_labels[pred]}, {txt=}")

<ipython-input-72-118abc29aba2>:4: UserWarning: To copy construct from a tensor,
it is recommended to use sourceTensor.clone().detach() or
sourceTensor.clone().detach().requires_grad_(True), rather than
torch.tensor(sourceTensor).

inputs = {k:torch.tensor(v).to(device) for k,v in inputs.items()}

thoreau: pred=thoreau, txt='He should have\n\ngone up garret at once. “What!”
exclaim a million Irishmen starting up\n\nfrom all the shanties in the land, “is
not this railroad which we have\n\nbuilt a good thing?” Yes, I answer,
comparatively good, that is, you\n\nmight have done worse; but I wish, as you
are brothers of mine, that\n\nyou could have spent your time better than digging
in this dirt.\n\n\n\n\n\n\n\n'
thoreau: pred=thoreau, txt='The exact cost of my house, paying the usual
price\n\nfor such materials as I used, but not counting the work, all of
which\n\nwas done by myself, was as follows; and I give the details because
very\n\nfew are able to tell exactly what their houses cost, and fewer
still,\n\nif any, the separate cost of the various materials which compose
them:—\n\n\n\n\n\n Boards… $ 8.03½, mostly shanty
boards.\n\n Refuse shingles for roof sides,.. 4.00\n\n
Laths,… 1.25\n\n Two second-hand windows\n\n
with glass,… 2.43\n\n One thousand old brick,…
4.00\n\n Two casks of lime,… 2.40 That was high.\n\n
Hair,… 0.31 More than I needed.\n\n Mantle-tree
iron,… 0.15\n\n Nails,… 3.90\n\n
Hinges and screws,… 0.14\n\n Latch,…
0.10\n\n Chalk,… 0.01\n\n
Transportation,… 1.40 I carried a good part\n\n

27

———— on my back.\n\n In all,…
$28.12½\n\n\n\n\n\nThese are all the materials excepting the timber stones and
sand, which\n\nI claimed by squatter’s right.'
emerson: pred=emerson, txt='[Footnote 181: _The other terror. _ The first,
conformity, has just\n\nbeen treated.]\n\n\n\n [Footnote 182: Consistency.'
thoreau: pred=thoreau, txt='It is the luxurious and dissipated who set the
fashions which the herd\n\nso diligently follow. The traveller who stops at the
best houses, so\n\ncalled, soon discovers this, for the publicans presume him to
be a\n\nSardanapalus, and if he resigned himself to their tender mercies
he\n\nwould soon be completely emasculated. I think that in the railroad
car\n\nwe are inclined to spend more on luxury than on safety and
convenience,\n\nand it threatens without attaining these to become no better
than a\n\nmodern drawing room, with its divans, and ottomans, and sun-shades,
and\n\na hundred other oriental things, which we are taking west with
us,\n\ninvented for the ladies of the harem and the effeminate natives of
the\n\nCelestial Empire, which Jonathan should be ashamed to know the
names\n\nof.'
thoreau: pred=thoreau, txt='So the Muse fables. But therein, as I found, dwelt
now John Field, an\n\nIrishman, and his wife, and several children, from the
broad-faced boy\n\nwho assisted his father at his work, and now came running by
his side\n\nfrom the bog to escape the rain, to the wrinkled, sibyl-
like,\n\ncone-headed infant that sat upon its father’s knee as in the palaces
of\n\nnobles, and looked out from its home in the midst of wet and
hunger\n\ninquisitively upon the stranger, with the privilege of infancy,
not\n\nknowing but it was the last of a noble line, and the hope and
cynosure\n\nof the world, instead of John Field’s poor starveling brat. There
we\n\nsat together under that part of the roof which leaked the least,
while\n\nit showered and thundered without.'

[74]: y_pred_trans = [predictor(txt) for txt in x_test_trans]

for txt, lbl, pred in zip(x_test_trans[:5], y_test_trans[:5], y_pred_trans[:5]):
print(f"{my_cat_labels[lbl]}: pred={my_cat_labels[pred]}, {txt=}")

<ipython-input-72-118abc29aba2>:4: UserWarning: To copy construct from a tensor,
it is recommended to use sourceTensor.clone().detach() or
sourceTensor.clone().detach().requires_grad_(True), rather than
torch.tensor(sourceTensor).

inputs = {k:torch.tensor(v).to(device) for k,v in inputs.items()}

thoreau: pred=thoreau, txt='He should have\n\ngone up garret at once. “What!”
exclaim a million Irishmen starting up\n\nfrom all the shanties in the land, “is
not this railroad which we have\n\nbuilt a good thing?” Yes, I answer,
comparatively good, that is, you\n\nmight have done worse; but I wish, as you
are brothers of mine, that\n\nyou could have spent your time better than digging
in this dirt.\n\n\n\n\n\n\n\n'
thoreau: pred=thoreau, txt='The exact cost of my house, paying the usual
price\n\nfor such materials as I used, but not counting the work, all of

28

which\n\nwas done by myself, was as follows; and I give the details because
very\n\nfew are able to tell exactly what their houses cost, and fewer
still,\n\nif any, the separate cost of the various materials which compose
them:—\n\n\n\n\n\n Boards… $ 8.03½, mostly shanty
boards.\n\n Refuse shingles for roof sides,.. 4.00\n\n
Laths,… 1.25\n\n Two second-hand windows\n\n
with glass,… 2.43\n\n One thousand old brick,…
4.00\n\n Two casks of lime,… 2.40 That was high.\n\n
Hair,… 0.31 More than I needed.\n\n Mantle-tree
iron,… 0.15\n\n Nails,… 3.90\n\n
Hinges and screws,… 0.14\n\n Latch,…
0.10\n\n Chalk,… 0.01\n\n
Transportation,… 1.40 I carried a good part\n\n
———— on my back.\n\n In all,…
$28.12½\n\n\n\n\n\nThese are all the materials excepting the timber stones and
sand, which\n\nI claimed by squatter’s right.'
emerson: pred=emerson, txt='[Footnote 181: _The other terror. _ The first,
conformity, has just\n\nbeen treated.]\n\n\n\n [Footnote 182: Consistency.'
thoreau: pred=thoreau, txt='It is the luxurious and dissipated who set the
fashions which the herd\n\nso diligently follow. The traveller who stops at the
best houses, so\n\ncalled, soon discovers this, for the publicans presume him to
be a\n\nSardanapalus, and if he resigned himself to their tender mercies
he\n\nwould soon be completely emasculated. I think that in the railroad
car\n\nwe are inclined to spend more on luxury than on safety and
convenience,\n\nand it threatens without attaining these to become no better
than a\n\nmodern drawing room, with its divans, and ottomans, and sun-shades,
and\n\na hundred other oriental things, which we are taking west with
us,\n\ninvented for the ladies of the harem and the effeminate natives of
the\n\nCelestial Empire, which Jonathan should be ashamed to know the
names\n\nof.'
thoreau: pred=thoreau, txt='So the Muse fables. But therein, as I found, dwelt
now John Field, an\n\nIrishman, and his wife, and several children, from the
broad-faced boy\n\nwho assisted his father at his work, and now came running by
his side\n\nfrom the bog to escape the rain, to the wrinkled, sibyl-
like,\n\ncone-headed infant that sat upon its father’s knee as in the palaces
of\n\nnobles, and looked out from its home in the midst of wet and
hunger\n\ninquisitively upon the stranger, with the privilege of infancy,
not\n\nknowing but it was the last of a noble line, and the hope and
cynosure\n\nof the world, instead of John Field’s poor starveling brat. There
we\n\nsat together under that part of the roof which leaked the least,
while\n\nit showered and thundered without.'

[75]: y_pred_trans = [torch.tensor(v).cpu() for v in y_pred_trans]

<ipython-input-75-29869180259a>:1: UserWarning: To copy construct from a tensor,
it is recommended to use sourceTensor.clone().detach() or
sourceTensor.clone().detach().requires_grad_(True), rather than
torch.tensor(sourceTensor).

29

y_pred_trans = [torch.tensor(v).cpu() for v in y_pred_trans]

[76]: y_test_trans = [torch.tensor(v).cpu() for v in y_test_trans]

[77]: show_metrics(y_pred_trans, y_test_trans, "Fine-tuned DistilBERT")

8 Fine-tuned DistilBERT
precision recall f1-score support

0 0.93 0.93 0.93 210
1 0.91 0.91 0.91 173

accuracy 0.92 383
macro avg 0.92 0.92 0.92 383

weighted avg 0.92 0.92 0.92 383

Test accuracy: 0.9216710182767625

30

8.1 Let’s check out the test samples that are misclassified.

[78]: def scalar_from_tensor(t):
if t.dim() == 0:

return t.item()
elif t.dim() == 1:

return t[0].item()
else:

raise ValueError(f"Unexpected tensor dimension: {t.dim()}")

[79]: y_test_trans = [scalar_from_tensor(t) for t in y_test_trans]
y_pred_trans = [scalar_from_tensor(t) for t in y_pred_trans]

print(f"y_test_trans: {y_test_trans[:5]}")
print(f"y_pred_trans: {y_pred_trans[:5]}")

y_test_trans: [1, 1, 0, 1, 1]
y_pred_trans: [1, 1, 0, 1, 1]

[80]: print("my_cat_labels")

rows = []
for i, (txt, lbl, pred) in enumerate(zip(x_test_trans, y_test_trans,␣

↪y_pred_trans)):
if lbl != pred:
print(f"{lbl=},{pred=}")
row =(my_cat_labels[lbl], my_cat_labels[pred], txt)
print(f"{row=}")
rows.append(row)

n_miss = len(rows)
print(f"Count of misclassified = {n_miss}")
misclassified_df = pd.DataFrame(rows, columns=["actual", "predicted", "text"])
misclassified_df.head(n_miss)

my_cat_labels
lbl=1,pred=0
row=(np.str_('thoreau'), np.str_('emerson'), '1.F.6. INDEMNITY - You agree to
indemnify and hold the Foundation, the\n\ntrademark owner, any agent or employee
of the Foundation, anyone\n\nproviding copies of Project Gutenberg� electronic
works in\n\naccordance with this agreement, and any volunteers associated with
the\n\nproduction, promotion and distribution of Project
Gutenberg�\n\nelectronic works, harmless from all liability, costs and
expenses,\n\nincluding legal fees, that arise directly or indirectly from any
of\n\nthe following which you do or cause to occur: (a) distribution of
this\n\nor any Project Gutenberg� work, (b) alteration, modification,
or\n\nadditions or deletions to any Project Gutenberg� work, and (c)
any\n\nDefect you cause.\n\n\n\n Section 2.')

31

lbl=0,pred=1
row=(np.str_('emerson'), np.str_('thoreau'), 'The city is recruited from the
country. In the year\n\n1805, it is said, every legitimate monarch in Europe was
imbecile. The\n\ncity would have died out, rotted, and exploded, long ago, but
that it\n\nwas reinforced from the fields.')
lbl=1,pred=0
row=(np.str_('thoreau'), np.str_('emerson'), 'The\n\nsuccess of great scholars
and thinkers is commonly a courtier-like\n\nsuccess, not kingly, not manly. They
make shift to live merely by\n\nconformity, practically as their fathers did,
and are in no sense the\n\nprogenitors of a nobler race of men. But why do men
degenerate ever?\n\n')
lbl=0,pred=1
row=(np.str_('emerson'), np.str_('thoreau'), 'If you discover a\n\ndefect in
this electronic work within 90 days of receiving it, you can\n\nreceive a refund
of the money (if any) you paid for it by sending a\n\nwritten explanation to the
person you received the work from. If you\n\nreceived the work on a physical
medium, you must return the medium\n\nwith your written explanation. The person
or entity that provided you\n\nwith the defective work may elect to provide a
replacement copy in\n\nlieu of a refund.')
lbl=0,pred=1
row=(np.str_('emerson'), np.str_('thoreau'), 'Do not charge a fee for access to,
viewing, displaying,\n\nperforming, copying or distributing any Project
Gutenberg� works\n\nunless you comply with paragraph 1.E.8 or
1.E.9.\n\n\n\n1.E.8. You may charge a reasonable fee for copies of or
providing\n\naccess to or distributing Project Gutenberg� electronic
works\n\nprovided that:\n\n\n\n • You pay a royalty fee of 20% of the gross
profits you derive from\n\n the use of Project Gutenberg� works
calculated using the method\n\n you already use to calculate your
applicable taxes. The fee is owed\n\n to the owner of the Project
Gutenberg� trademark, but he has\n\n agreed to donate royalties under
this paragraph to the Project\n\n Gutenberg Literary Archive Foundation.
Royalty payments must be paid\n\n within 60 days following each date on
which you prepare (or are\n\n legally required to prepare) your periodic
tax returns.')
lbl=1,pred=0
row=(np.str_('thoreau'), np.str_('emerson'), 'Comparatively, he is always
strong, original, and, above all,\n\npractical. Still his quality is not wisdom,
but prudence. The lawyer’s\n\ntruth is not Truth, but consistency or a
consistent expediency.')
lbl=0,pred=1
row=(np.str_('emerson'), np.str_('thoreau'), 'It\n\nexists because of the
efforts of hundreds of volunteers and donations\n\nfrom people in all walks of
life.\n\n\n\n Volunteers and financial support to provide volunteers with
the\n\nassistance they need are critical to reaching Project
Gutenberg�’s\n\ngoals and ensuring that the Project Gutenberg� collection
will\n\nremain freely available for generations to come. In 2001, the
Project\n\nGutenberg Literary Archive Foundation was created to provide a
secure\n\nand permanent future for Project Gutenberg� and future\n\ngenerations.

32

To learn more about the Project Gutenberg Literary\n\nArchive Foundation and how
your efforts and donations can help, see\n\nSections 3 and 4 and the Foundation
information page at www.gutenberg.org.\n\n\n\n Section 3.')
lbl=0,pred=1
row=(np.str_('emerson'), np.str_('thoreau'), 'and what a compensation for
the\n\nshortness of life! All is done to his hand. The world has brought
him\n\nthus far on his way. The human race has gone out before him, sunk
the\n\nhills, filled the hollows, and bridged the rivers.')
lbl=1,pred=0
row=(np.str_('thoreau'), np.str_('emerson'), 'How much\n\nmore admirable the
Bhagvat-Geeta than all the ruins of the East! Towers\n\nand temples are the
luxury of princes. A simple and independent mind\n\ndoes not toil at the bidding
of any prince.')
lbl=0,pred=1
row=(np.str_('emerson'), np.str_('thoreau'), 'You may use this eBook for nearly
any purpose such as creation\n\nof derivative works, reports, performances and
research. Project\n\nGutenberg eBooks may be modified and printed and given
away—you may\n\ndo practically ANYTHING in the United States with eBooks not
protected\n\nby U.S. copyright law. Redistribution is subject to the
trademark\n\nlicense, especially commercial redistribution.\n\n\n\n\n\n')
lbl=0,pred=1
row=(np.str_('emerson'), np.str_('thoreau'), 'See the\n\ninvestment of capital
in aqueducts, made useless by hydraulics;\n\nfortifications, by gunpowder; roads
and canals, by railways; sails, by\n\nsteam; steam, by electricity.\n\n\n\n You
admire this tower of granite, weathering the hurts of so many\n\nages. Yet a
little waving hand built this huge wall, and that which\n\nbuilds is better than
that which is built.')
lbl=0,pred=1
row=(np.str_('emerson'), np.str_('thoreau'), 'The length of the discourse
indicates the\n\ndistance of thought betwixt the speaker and the hearer. If they
were\n\nat a perfect understanding in any part, no words would be
necessary\n\nthereon. If at one in all parts, no words would be
suffered.\n\n\n\n')
lbl=0,pred=1
row=(np.str_('emerson'), np.str_('thoreau'), 'All the\n\nmass has been treated,
with more or less skill, by every playwright,\n\nand the prompter has the soiled
and tattered manuscripts. It is now no\n\nlonger possible to say who wrote them
first. They have been the\n\nproperty of the Theater so long, and so many rising
geniuses have\n\nenlarged or altered them, inserting a speech, or a whole scene,
or\n\nadding a song, that no man can any longer claim copyright in this
work\n\nof numbers. Happily, no man wishes to.')
lbl=0,pred=1
row=(np.str_('emerson'), np.str_('thoreau'), 'Of course, we hope\n\nthat you
will support the Project Gutenberg� mission of promoting\n\nfree access to
electronic works by freely sharing Project Gutenberg�\n\nworks in compliance
with the terms of this agreement for keeping the\n\nProject Gutenberg� name
associated with the work. You can easily\n\ncomply with the terms of this
agreement by keeping this work in the\n\nsame format with its attached full

33

Project Gutenberg� License when\n\nyou share it without charge with
others.\n\n\n\n 1.D. The copyright laws of the place where you are located also
govern\n\nwhat you can do with this work. Copyright laws in most countries
are\n\nin a constant state of change.')
lbl=1,pred=0
row=(np.str_('thoreau'), np.str_('emerson'), 'In earlier ages, in some
countries, every function was reverently\n\nspoken of and regulated by law.
Nothing was too trivial for the Hindoo\n\nlawgiver, however offensive it may be
to modern taste. He teaches how\n\nto eat, drink, cohabit, void excrement and
urine, and the like,\n\nelevating what is mean, and does not falsely excuse
himself by calling\n\nthese things trifles.\n\n\n\n Every man is the builder of
a temple, called his body, to the god he\n\nworships, after a style purely his
own, nor can he get off by hammering\n\nmarble instead.')
lbl=1,pred=0
row=(np.str_('thoreau'), np.str_('emerson'), 'how much more important to know
what that is which was never\n\nold! “Kieou-he-yu (great dignitary of the state
of Wei) sent a man to\n\nKhoung-tseu to know his news. Khoung-tseu caused the
messenger to be\n\nseated near him, and questioned him in these terms: What is
your master\n\ndoing? The messenger answered with respect: My master desires
to\n\ndiminish the number of his faults, but he cannot come to the end
of\n\nthem.')
lbl=0,pred=1
row=(np.str_('emerson'), np.str_('thoreau'), '1.F.\n\n\n\n1.F.1. Project
Gutenberg volunteers and employees expend considerable\n\neffort to identify, do
copyright research on, transcribe and proofread\n\nworks not protected by U.S.
copyright law in creating the Project\n\nGutenberg� collection. Despite these
efforts, Project Gutenberg�\n\nelectronic works, and the medium on which they
may be stored, may\n\ncontain “Defects,” such as, but not limited to,
incomplete, inaccurate\n\nor corrupt data, transcription errors, a copyright or
other\n\nintellectual property infringement, a defective or damaged disk
or\n\nother medium, a computer virus, or computer codes that damage or\n\ncannot
be read by your equipment.\n\n\n\n1.F.2. LIMITED WARRANTY, DISCLAIMER OF DAMAGES
-')
lbl=1,pred=0
row=(np.str_('thoreau'), np.str_('emerson'), 'Our whole life is startlingly
moral. There is never an instant’s truce\n\nbetween virtue and vice. Goodness is
the only investment that never\n\nfails. In the music of the harp which trembles
round the world it is\n\nthe insisting on this which thrills us.')
lbl=1,pred=0
row=(np.str_('thoreau'), np.str_('emerson'), 'Nature puts no question
and\n\nanswers none which we mortals ask. She has long ago taken
her\n\nresolution. “O Prince, our eyes contemplate with admiration
and\n\ntransmit to the soul the wonderful and varied spectacle of
this\n\nuniverse. The night veils without doubt a part of this
glorious\n\ncreation; but day comes to reveal to us this great work, which
extends\n\nfrom earth even into the plains of the ether.”\n\n\n\n Then to my
morning work.')
lbl=0,pred=1

34

row=(np.str_('emerson'), np.str_('thoreau'), 'Better than the hand and nimbler
was the\n\ninvisible thought which wrought through it; and thus ever, behind
the\n\ncoarse effect, is a fine cause, which, being narrowly seen, is
itself\n\nthe effect of a finer cause. Everything looks permanent until
its\n\nsecret is known. A rich estate appears to women and children a
firm\n\nand lasting fact; to a merchant, one easily created out of
any\n\nmaterials, and easily lost. An orchard, good tillage, good
grounds,\n\nseem a fixture, like a gold mine, or a river, to a citizen; but to
a\n\nlarge farmer, not much more fixed than the state of the crop.')
lbl=1,pred=0
row=(np.str_('thoreau'), np.str_('emerson'), '1.E. Unless you have removed all
references to Project Gutenberg:\n\n\n\n1.E.1. The following sentence, with
active links to, or other\n\nimmediate access to, the full Project Gutenberg�
License must appear\n\nprominently whenever any copy of a Project Gutenberg�
work (any work\n\non which the phrase “Project Gutenberg” appears, or with which
the\n\nphrase “Project Gutenberg” is associated) is accessed,
displayed,\n\nperformed, viewed, copied or distributed:\n\n\n\n This eBook is
for the use of anyone anywhere in the United States and most\n\n other parts
of the world at no cost and with almost no restrictions\n\n whatsoever. You
may copy it, give it away or re-use it under the terms\n\n of the Project
Gutenberg License included with this eBook or online\n\n at
www.gutenberg.org. If you\n\n are not located in the United States, you will
have to check the laws\n\n of the country where you are located before using
this eBook.\n\n \n\n1.E.2.')
lbl=0,pred=1
row=(np.str_('emerson'), np.str_('thoreau'), 'You provide, in accordance with
paragraph 1.F.3, a full refund of\n\n any money paid for a work or a
replacement copy, if a defect in the\n\n electronic work is discovered
and reported to you within 90 days of\n\n receipt of the work.\n\n
\n\n • You comply with all other terms of this agreement for free\n\n
distribution of Project Gutenberg� works.\n\n \n\n\n\n1.E.9. If you wish to
charge a fee or distribute a Project\n\nGutenberg� electronic work or group of
works on different terms than\n\nare set forth in this agreement, you must
obtain permission in writing\n\nfrom the Project Gutenberg Literary Archive
Foundation, the manager of\n\nthe Project Gutenberg� trademark.')
lbl=1,pred=0
row=(np.str_('thoreau'), np.str_('emerson'), '1.D. The copyright laws of the
place where you are located also govern\n\nwhat you can do with this work.
Copyright laws in most countries are\n\nin a constant state of change. If you
are outside the United States,\n\ncheck the laws of your country in addition to
the terms of this\n\nagreement before downloading, copying, displaying,
performing,\n\ndistributing or creating derivative works based on this work or
any\n\nother Project Gutenberg� work.')
lbl=1,pred=0
row=(np.str_('thoreau'), np.str_('emerson'), 'I will just try these three
sentences of Con-fut-see; they may fetch\n\nthat state about again. I know not
whether it was the dumps or a\n\nbudding ecstasy. Mem. There never is but one
opportunity of a kind.\n\n\n\n_Poet.')

35

lbl=0,pred=1
row=(np.str_('emerson'), np.str_('thoreau'), 'It may only be\n\nused on or
associated in any way with an electronic work by people who\n\nagree to be bound
by the terms of this agreement. There are a few\n\nthings that you can do with
most Project Gutenberg� electronic works\n\neven without complying with the full
terms of this agreement. See\n\nparagraph 1.C below. There are a lot of things
you can do with Project\n\nGutenberg� electronic works if you follow the terms
of this\n\nagreement and help preserve free future access to Project
Gutenberg�\n\nelectronic works.')
lbl=1,pred=0
row=(np.str_('thoreau'), np.str_('emerson'), 'The Foundation’s EIN or federal
tax identification\n\nnumber is 64-6221541. Contributions to the Project
Gutenberg Literary\n\nArchive Foundation are tax deductible to the full extent
permitted by\n\nU.S. federal laws and your state’s laws.\n\n\n\n The
Foundation’s business office is located at 809 North 1500 West,\n\nSalt Lake
City, UT 84116, (801) 596-1887.')
lbl=1,pred=0
row=(np.str_('thoreau'), np.str_('emerson'), 'Poetry and art, and the fairest
and most memorable\n\nof the actions of men, date from such an hour. All poets
and heroes,\n\nlike Memnon, are the children of Aurora, and emit their music
at\n\nsunrise. To him whose elastic and vigorous thought keeps pace with
the\n\nsun, the day is a perpetual morning. It matters not what the clocks
say\n\nor the attitudes and labors of men.')
lbl=1,pred=0
row=(np.str_('thoreau'), np.str_('emerson'), 'No wonder that the\n\nearth
expresses itself outwardly in leaves, it so labors with the idea\n\ninwardly.
The atoms have already learned this law, and are pregnant by\n\nit. The
overhanging leaf sees here its prototype.')
lbl=1,pred=0
row=(np.str_('thoreau'), np.str_('emerson'), 'Alas! how little does the memory
of these human inhabitants\n\nenhance the beauty of the landscape! Again,
perhaps, Nature will try,\n\nwith me for a first settler, and my house raised
last spring to be the\n\noldest in the hamlet.\n\n\n\n I am not aware that any
man has ever built on the spot which I occupy.\n\n Deliver me from a city built
on the site of a more ancient city, whose\n\nmaterials are ruins, whose gardens
cemeteries.')
lbl=0,pred=1
row=(np.str_('emerson'), np.str_('thoreau'), 'Has\n\nhe talents? has he
enterprises? has he knowledge? It boots not.\n\n Infinitely alluring and
attractive was he to you yesterday, a great\n\nhope, a sea to swim in; now, you
have found his shores, found it a\n\npond, and you care not if you never see it
again.\n\n\n\n')
Count of misclassified = 30

[80]: actual predicted text
0 thoreau emerson 1.F.6. INDEMNITY - You agree to indemnify and …
1 emerson thoreau The city is recruited from the country. In the…

36

2 thoreau emerson The\n\nsuccess of great scholars and thinkers …
3 emerson thoreau If you discover a\n\ndefect in this electronic…
4 emerson thoreau Do not charge a fee for access to, viewing, di…
5 thoreau emerson Comparatively, he is always strong, original, …
6 emerson thoreau It\n\nexists because of the efforts of hundred…
7 emerson thoreau and what a compensation for the\n\nshortness o…
8 thoreau emerson How much\n\nmore admirable the Bhagvat-Geeta t…
9 emerson thoreau You may use this eBook for nearly any purpose …
10 emerson thoreau See the\n\ninvestment of capital in aqueducts,…
11 emerson thoreau The length of the discourse indicates the\n\nd…
12 emerson thoreau All the\n\nmass has been treated, with more or…
13 emerson thoreau Of course, we hope\n\nthat you will support th…
14 thoreau emerson In earlier ages, in some countries, every func…
15 thoreau emerson how much more important to know what that is w…
16 emerson thoreau 1.F.\n\n\n\n1.F.1. Project Gutenberg volunteer…
17 thoreau emerson Our whole life is startlingly moral. There is …
18 thoreau emerson Nature puts no question and\n\nanswers none wh…
19 emerson thoreau Better than the hand and nimbler was the\n\nin…
20 thoreau emerson 1.E. Unless you have removed all references to…
21 emerson thoreau You provide, in accordance with paragraph 1.F…
22 thoreau emerson 1.D. The copyright laws of the place where you…
23 thoreau emerson I will just try these three sentences of Con-f…
24 emerson thoreau It may only be\n\nused on or associated in any…
25 thoreau emerson The Foundation’s EIN or federal tax identifica…
26 thoreau emerson Poetry and art, and the fairest and most memor…
27 thoreau emerson No wonder that the\n\nearth expresses itself o…
28 thoreau emerson Alas! how little does the memory of these huma…
29 emerson thoreau Has\n\nhe talents? has he enterprises? has he …

[80]:

37

	Supervised Machine Learning - Identify Author
	The Dataset
	Now we have our dataset in combined.csv

	Logistic Regression
	Random Forest
	SVM
	Logistic Regression on DistilBERT hidden states
	Random Forest on DistilBERT hidden states
	SVM on DistilBERT hidden states
	Fine-tuned DistilBERT
	Let's check out the test samples that are misclassified.

